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Abstract 
Though the 2019 coronavirus illness (COVID-19) outbreak began in late December 2019 and is now being 

contained in China, it continues to spread quickly in many other parts of the globe. Research on the epidemiology 

and potential future developments of the pandemic must be undertaken immediately. To forecast the spread of 

COVID-19, this paper suggests a hybrid AI model. Firstly, an improved susceptible-infected (ISI) model is 

suggested to estimate the diversity of infection rates in order to analyze transmission laws and development trends, 

as standard epidemic models regard all persons with coronavirus as having the same infection rate. The second step 

in developing a hybrid AI model for COVID-19 prediction is to include the ISI model with a natural language 

processing (NLP) module and an LSTM network. This will allow us to account for the impact of control and 

preventive efforts as well as the rise in public awareness of the need of prevention. The experimental findings, based 

on epidemic data from many typical Chinese provinces and cities, demonstrate that the real laws of epidemic 

transmission are more accurately reflected by the greater infection rate experienced by infected people between the 

third and eighth days after infection. In comparison to conventional epidemic models, the suggested hybrid AI 

model achieves MAPPs of 0.52% for the next six days in Wuhan, 0.38% in Beijing, 0.05% in Shanghai, and 0.86% 

nationwide. This is in addition to a significant reduction in prediction errors. 

Index Terms 

Coronavirus disease 2019 (COVID-19) prediction, epidemic model, hybrid artificial-intelligence (AI) model, natural 

language processing (NLP). 

 

I. INTRODUCTION 

The 2019 coronavirus disease outbreak (COVID-19) 

occurred during China's spring festival season, 

coinciding with its rapid national expansion. There 

was a shortage of medical resources, a medical 

community that was unfamiliar with the novel 

coronavirus, and the very irregular nature of the main 

stage of the epidemic, all of which contributed to the 

ineffective suppression of the COVID-19 throughout 

its transmission [1]. It was officially confirmed on 

January 20, 2020 [2] that the COVID-19 may be 

communicated from person to person. As a result, 

China's cities and provinces have taken 

unprecedented steps to prevent and control the spread 

of the virus, with the airport and train terminals in 

Wuhan being closed on January 23, 2020. These 

efficient methods of prevention and management 
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have led to a steady rise in public understanding of 

the need of taking precautions against epidemics. The 

rate of new infections is now declining sharply. For 

sixteen days in a row, the number of newly 

confirmed cases outside of Hubei fell from February 

3, 2020 to February 19, 2020. Meanwhile, new 

infections in Hubei have been steadily declining since 

February 12, 2020, and the number of patients who 

have been cured has been on the rise. Although there 

has been some progress in preventing and controlling 

the pandemic in China, other nations and areas are 

still facing a grave scenario, particularly in Europe, 

Iran, South Korea, the US, and Japan. If the 

pandemic is to be successfully contained, every 

nation or area must devise specific plans for 

prevention and control. Research into the causes and 

dynamics of epidemics is, hence, essential. To 

effectively avoid and manage this pandemic, it is 

important to analyze the development law and 

anticipate the trajectory of COVID-19. The use of 

epidemic models allows for the study and prediction 

of the illness's development trend, which in turn 

guides the creation of control and preventative 

measures in the event of a large-scale infectious 

disease epidemic and the initiation of a significant 

public health emergency. The most popular 

traditional models for epidemics are susceptible-

infected (SI), susceptible-exposed-infected-recovered 

(SEIR) and susceptible-infected-recovered (SIR) [3]-

[5]. In these models, "S," "E," "I," and "R" stand for 

the numbers of susceptible individuals, incubation 

period participants, infectious cases, and recovered 

individuals, respectively. The SI, SIR, and SEIR 

models use differential equations to depict the I-S 

connection. These A number of illnesses, including 

Ebola and SARS, have been effectively predicted 

using models due to their robust disease prediction 

capabilities [6]-[10]. The critical nature of the 

COVID-19 pandemic makes it all the more crucial to 

track changes in the daily confirmed case count in 

order to deduce the epidemic's trajectory. Hence, the 

effect of the pattern of new infections on epidemic 

propagation must be our primary concern. In 

addition, the article does not take into account the 

impact of death and cure rates on the epidemic trend 

as these two variables are not directly related to the 

number of new confirmed cases per day. 

Conventional epidemic models project the outbreak's 

trajectory by first analyzing the infection rate in 

relation to the changing number of infections. On the 

other hand, these models assume that the infection 

rate for coronavirus is constant throughout all cases. 

There are limits to their prediction findings since they 

can only provide broad trends. Transparent reporting 

of the epidemic, implementation of prevention and 

control measures, and reinforcement of residents' 

prevention awareness have accelerated the 

containment of the virus. The government's 

prevention and control measures have a significant 

impact on the containment of the epidemic's 

development trend. Clearly, reliable prediction 

cannot be achieved with just epidemic data. In order 

to handle public health crises, we need to create an 

epidemic model that is based on data. By including 

news information elements, we may enhance the 

accuracy of model prediction, overcome the 

constraint of classic epidemic models that rely on a 

single component, and confirm that the government's 

preventative and control methods are working. In 

order to address this issue, our epidemic model 

incorporates a long short-term memory (LSTM) 

network with a natural language processing (NLP) 

module. This allows us to update the infection rate 

and enhance the model's predicted accuracy. 

According to Hochreiter and Schmidhuber [11], Long 

Short-Term Memory (LSTM) is a traditional RNN. 

The continuous error carousel unit is an LSTM 

innovation that helps with training-related issues 

including gradient explosion and disappearance. For 

long-sequence data classification, processing, and 

prediction, LSTM is the way to go [13]-[16] since it 

outperforms classical RNN [12] in capturing 

sequence dependencies over the long term. Many 

tasks have seen increased application of LSTMs in 

recent years, including natural language processing 

[17]–[20], picture production [21], [22], and video 

analysis [23], [24]. This article presents an improved 

susceptible-infected (ISI) model based on an 

examination of the coronavirus infection rate, models 

the capacity of viruses to infect susceptible persons 

according to various times after infection, and 

focuses on the analysis of the infection rate of 

individuals. This article presents the important 

information about the great efforts led by the central 

and local governments, as well as the massive 

support participation from the public into the 

prediction calculation process, and explains how the 

hybrid artificial intelligence (AI) model based on the 

proposed ISI model predicts the COVID-19. The 

model includes an NLP module and an LSTM 

network. In addition, the study forecasts the 

epidemic's trajectory by analyzing its evolution 

through the lens of the suggested hybrid prediction 

model. Experimental results using epidemic data 

from multiple representative Chinese cities and 

provinces demonstrate that the suggested hybrid 
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model outperforms more conventional approaches to 

epidemic modeling in terms of accuracy and 

robustness, and can serve as a foundation for 

estimating the law of virus spread. Furthermore, by 

incorporating news information into our hybrid AI 

model, we were able to produce prediction results 

that were more in line with the actual trend of 

epidemic development. This highlights the 

importance of openness, transparency, and efficiency 

in data releasing for the establishment of a modern 

epidemic prevention system. The following is the 

structured rest of the article. The suggested AI 

model's structure is shown in Section II. In Section 

III, the ISI epidemic model is suggested for the 

purpose of studying the transmission laws of 

epidemics. An LSTM model that is based on natural 

language processing (NLP) is provided in Section IV 

for accurate prediction. Results from experiments 

using epidemic data from a number of representative 

Chinese provinces and localities are presented in 

Section V. You may find the conclusion in Section 

VI. 

 

II. FRAMEWORK OF THE 

HYBRID AI MODEL 

Current epidemic models predict that in the future, 

unquarantined coronavirus patients will be the source 

of infection for newly confirmed cases every day. 

Predicting the number of new confirmed cases each 

day is therefore accomplished by multiplying the 

expected infection rate by the number of sick patients 

who are not quarantined, which is considered the 

basis by most epidemic models [25]-[27]. On the 

other hand, coronavirus infection rates change at 

various points of time after infection [28]. Due to 

their assumption that all infected people have the 

same infection rate, traditional epidemic models fail 

to capture the pattern of an epidemic's progression. 

The majority of newly confirmed cases right now are 

due to infections that occurred in the last few days, 

despite efforts to prevent and limit the spread of the 

disease. Since cured and died patients do not affect 

the number of new confirmed cases in any way, they 

are not included in the epidemic model that is 

established in this article. On this premise, we 

provide a grouped multiparameter model for the ISI 

pandemic that is retrospective in nature. To 

determine the infection rate and build an epidemic 

model, the retrospective method relies on a ratio of 

the number of newly confirmed cases at time t to the 

total number of new confirmed cases across all time 

scales prior to time t. In addition, the model's 

prediction results are used to examine the 

significance of various time scales with respect to the 

newly confirmed instances at time t. To measure the 

infection rate of infected cases at various periods, the 

ISI model uses grouped multiparameter variables that 

figure out how confirmed cases at different times 

before t affect confirmed cases at time t. The next 

step is to examine the infectious illness development 

law using the upgraded model. Aside from that, the 

suggested ISI model is employed in conjunction with 

the LSTM network to calculate the number of 

infections and the variation in infection rates in the 

epidemic model. 
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Fig. 1. Hybrid AI model for COVID-19 prediction by using all historical data. 

sick individuals. In order to examine the impact of 

government control measures, the media's open 

reporting, and the growing public awareness of the 

need to avoid epidemics, this article employs 

pretrained natural language processing models to 

extract characteristics from pertinent news stories in 

different provinces and cities. After that, the LSTM 

network is used to fix the discrepancy in the infection 

rate projected by the ISI model. This model could 

forecast the number of cases based on the laws of 

transmission and the pattern of development. Figure 

1 depicts the suggested structure. 

 

III. ANALYSIS OF THE LAWS 

OF EPIDEMIC TRANSMISSION 

There is still a lack of thorough examination in 

traditional epidemic models, which assume that the 

number of new infectious cases is proportional to the 

number of infected and susceptible individuals. 

Infectious illnesses have distinct life cycles that 

people experience [29]. In order to study the 

epidemic's infection law, it is necessary to identify 

the temporal distribution of the infectious sources of 

new confirmed cases everyday. Using fresh 

confirmed data as a basis, this essay models the 

epidemic's propagation rules and development 

tendency. This article does not take into account 

death and cure rates since they are unrelated to the 

amount of newly confirmed cases. We may assume 

that almost all newly confirmed cases of COVID-19 

are caused by individuals who were confirmed during 

the last 14 days, as the observation period for this 

virus is 14 days [30]. A majority of the patients who 

are now being studied have been placed in 

quarantine, closely monitored, and tested using a 

nucleic acid reagent. Most of the confirmed patients 

were quarantined at least three days before the 

confirmation, so they cannot infect others. This 

means that most of the confirmed patients cannot be 

infected by another confirmed case that was 

confirmed eleven days ago, since patients are 

required to obtain a minimum of two positive results 

before they are confirmed as positive for COVID-19. 

So, this article looks at the infection rate of new daily 

confirmed cases in the last 10 days compared to the 

confirmed cases of day t for every day t. The 

following symbols are defined for an improved 

analysis: S(t) is the count of susceptible individuals 

on day t, I(t) is the total number of confirmed cases 

up to that point (inclusive), and I(t) =I(t)−I(t−1) is the 

count of newly confirmed cases on that day. We need 

to find the window of opportunity for the confirmed 

cases to infect the newly confirmed patients at day t 

in order to have a full picture of how the infected 

cases affect subsequent affected people. The rules of 

transmission may then be determined by comparing 

and contrasting them. In this essay, we will assume 

that from day t−1 to day t−10, a confirmed individual 

infects the patients who confirmed on day t. We 

employ the retrospective technique to examine the 
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temporal laws of epidemic transmission in the last 

few days in order to establish at what stage the 

present new daily confirmed patients are infected at a 

high infection rate. We analyze the temporal laws of 

COVID-19 transmission in detail and apply it to 

many infection periods to construct an improved 

multiparameter epidemic model over the previous 10 

days. The computer model of the ISI outbreak is 

shown in Fig. 2. 

A. Infection Rate Correlation Model Based on the 

Retrospective Approach The prevailing assumption 

in traditional epidemic models is that confirmed cases 

on a given day are a direct result of confirmed cases 

in the preceding several days. Previous studies on 

epidemics have often used models that assume 

transmission is impacted by a fixed number of days, 

as shown in [31], [32]. 

 

 

Fig. 2. ISI model. 

based on the last k days. But these models don't look 

at the transmission of epidemics in detail. The 

general rules of epidemic development state that, on 

day t, early confirmed patients (e.g., day t−5) are 

more likely to infect individuals diagnosed on day t, 

in comparison to patients confirmed at the adjacent 

period (e.g., day t−1). In order to obtain the laws of 

COVID-19 transmission with improved macroscopic 

guiding significance for the overall trend estimation 

of epidemic development, one can model on the 

infection rate of the cumulative number of confirmed 

cases in the past k days relative to the confirmed 

cases on day t. We examine the impact of cumulative 

confirmed cases at various dates on the calculation of 

the infection rate using the retrospective technique. 

Based on the total number of confirmed cases over 

the last k days, we calculate the infection rate of 

newly confirmed cases and compare it to the 

infection rate in other locations and time periods. The 

following is the equation: 

 

 

In this context, β1(t,k) represents the infection rate, 

which is defined as the sum of all confirmed cases 

from day t−k to day t−1, divided by the total number 

of confirmed cases on day t, as a function of k, where 

i=1. The sentence illustrates the connection between 

the quantity of newly confirmed cases I(t) on day t 

and the quantity of new confirmed cases k j=1 •I(t−k) 

on the previous k days. In order to examine the effect 

of the total number of confirmed cases over the last k 

days on the number of new confirmed instances on 

day t, the first step is to find out the generally stable 

connection between I(t) and k i=1 

I(t−i). This is known as β1(t,k). Our goal is to clarify 

the rules of epidemic propagation so that they may be 

fairly used and to provide assistance with further 

research. Secondly, all provinces and the nation as a 

whole may have their parameter ˆ β1(t,k) determined 

by (1). Since the rate of infection during an epidemic 

evolves exponentially, this article estimates the 

spread of the epidemic by using the exponential 

function L(t) = a×e−bt to fit ˆ β1(t,k). Both 

parameters, a and b, must be greater than zero for the 

exponential function to be defined in the formula. 

And lastly, since patients cannot be adequately 

confined during the incubation period, the infection 

rate is high. Hence, the section estimates β1(t,k) by 

progressively raising k, and the model is updated to 

reflect the number of additional confirmed instances 
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at an earlier time point. whether the model's 

predictions hold, we may next determine whether the 

newly confirmed cases at each time point will infect 

the newly confirmed patients on day t. As the 

epidemic spreads, it is also possible to determine the 

rules of patient evolution at various time intervals.B. 

Grouped multiparameter influence model of infection 

rate According to this article, the stringent control 

and quarantine procedures ensure that infected cases 

cannot infect as many vulnerable individuals once 

they are contained. Newly confirmed patients in the 

previous k days are therefore likely to infect newly 

confirmed cases on day t. The rate of infection is 

strongly correlated with the duration of patient 

infection [33]. Infectious rates may therefore vary 

among newly confirmed cases at various points in the 

previous k days, as shown on day t. Based on (1), we 

may deduce that the most recent couple days are 

likely the earliest feasible infection time. From day 

t−k to day t−1, we assign various weights to the 

number of new confirmed cases each day in order to 

quantify the contribution of new confirmed cases at 

different periods to the infection rate at time t. This 

allows us to further evaluate the difference. The next 

step is to use the weighted cumulative confirmed 

number, the epidemic model, to estimate the infection 

rate. Two days next to each other are considered a 

propagation unit in order to simplify the model, and 

each day is given the same weight αi. After that, as 

seen in (2), multiparameter pandemic modeling is 

executed. While reducing the search area of the 

weight and the model's complexity, the model makes 

it more resilient by avoiding the abrupt change in 

weight induced by a single data irregularity. 

 

 

 

when i equals 1, αi equals 1. This section proposes a 

model that, building on the previous epidemic model, 

takes into account the transmission correlation 

between the total number of confirmed cases over the 

past k days and the number of new cases on day t by 

taking into account the difference in the infection rate 

of new confirmed cases over the past k days 

compared to the new confirmed cases on day t. The 

process starts with randomly initializing many groups 

with various weights αi, and then a multiparameter 

epidemic model is set up using (2). The more 

accurate the model's predictions, the more closely the 

associated weights reflect the actual infection law. 

Lastly, by comparing the weights given to various 

time periods, we may deduce the infection rate that 

significantly contributes to the viral infection. Using 

the value of αi derived from (1) and (2), we can 

determine the link between the newly confirmed 

cases on day t and the new confirmed cases on days 

t−10 to t−1. On the other hand, underfitting may 

occur with insufficient parameters (i.e., (1)) and 

overfitting is easy with an excess of parameters (i.e., 

(2)). Accordingly, we use the aforementioned 

findings to further equalize the number of factors. 

The collection of days designated by 

{t−i|i=1,2,...,10}separated into two sets, with set A 

consisting of the days that had a stronger influence on 

the number of new confirmed cases on day t and set 

B consisting of the other days. Like in, set A is 

assigned a weight of γ1, while set B is assigned a 

weight of γ2. 

 

In a set, |·| represents the number of elements, and 

γ1|A|+γ2|B|=1. The infection rate is determined using 

the formula (3). Method for Data Preprocessing (C) 

According to the Suggested Model As a result of a 

lack of training and resources and an incomplete 

knowledge of the new coronavirus's symptoms, 

diagnostic criteria for patients were revised 

nationwide during the first stages of the COVID-19 

epidemic. All provinces' epidemic data had a 

significant amount of noise due to these causes. The 

diagnostic criteria in Hubei Province were updated to 

include clinical diagnosis with the introduction of the 

fifth edition of the treatment and diagnosis plan on 

February 12, 2020. The new daily confirmed cases of 

Wuhan surged to 13,436 on that particular day 

because to this clinical diagnosis. Subsequent 

modeling is greatly hindered by these out-of-the-

ordinary and noisy data values. Two common ways 

to handle out-of-the-ordinary data points include data 

cleaning, which involves deleting them, and the 

interpolation-based technique. But there are a lot of 

problems with these approaches. Due to the very 

short time scale of the epidemic data, data cleaning 

results in significant data loss and lowers the 

accuracy of the overall trend estimate of the epidemic 

model. However, the accuracy of short-term 

parameter estimate is affected and the dynamic 
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development laws of irregular dates are lost when 

using the interpolation-based technique, even if it 

does not cause data loss. As a result, the majority of 

the newly confirmed cases each day derived from 

anomalous data points are actually missed diagnoses 

during the early stages of the pandemic. Leaving out 

this patient count will lead the model to overestimate 

the severity of the epidemic in its early stages, which 

will impact its ability to represent rules of evolution 

that follow. This article suggests a "data balance" 

approach using the epidemic model as a data 

preprocessing module to mitigate the effects of 

diagnostic criterion modifications for the out-of-the-

ordinary data points close to February 12, 2020. In 

order to forecast the amount of new confirmed cases 

on the anomalous dates, an epidemic model is first 

constructed using data collected before to February 

12, 2020. Secondly, the total number of patients that 

were overlooked in the early stages is the sum of all 

the data points that deviate from the prediction 

findings. Third, in order to create "trend balance" in 

the total data, these patients are equally split into 

abnormal and normal dates. What follows are the 

specifics of the implementation. Start the date with ts 

and finish it with te if it contains anomalous data. In 

order to construct an ISI epidemic model and forecast 

the amount of new confirmed cases on out-of-the-

ordinary dates, use the formula I(t0)···I(ts). 2) Add 

up the number of newly confirmed cases each day 

and the number of missed diagnoses (M) to get the 

total number of 

 

 

Two major benefits characterize the data balance 

preprocessing approach. 1) The calculating technique 

of the infection rate β(t) will not alter the evolution 

trend of β(t) if the number of new confirmed cases 

before ts is raised α times, as stated in (1)-(3). After 

all the data points before te have been expanded, the 

number of new daily confirmed cases I(t) before and 

after the anomalous date may keep its development 

trend; hence, the long-term fitting result of β(t) 

becomes progressively stable. Ts is set to February 

12, 2020, while te is set to February 13, 2020. 

 

IV. PREDICTION OF 

THE 

DEVELOPMENT 

TREND OF THE 

EPIDEMIC 

While the epidemic model does a good job of 

predicting when infectious illnesses will spread, it 

ignores important elements like control and 

preventative efforts. Thus, in order to bring the 

epidemic model's parameters up to date, new 

mechanisms must be implemented. A common use of 

the LSTM network is data prediction, but it is also 

useful for modeling hidden variables (such as the 

number of persons who may be infected). When it 

comes to predicting the number of infected patients, 

however, investigations have shown that the LSTM 

network alone is ineffective. In light of the fact that 

public knowledge of and response to epidemic 

prevention efforts is highly correlated with actual 

viral transmission, this article employs natural 

language processing (NLP) technology to glean 

semantic features from news articles covering these 

topics. The LSTM network employs these 

characteristics thereafter. The conventional epidemic 

model predicts the number of infections by adjusting 

the infection rate. In order to increase the accuracy of 

epidemic prediction, this technique refreshes the 

infection rate using news information and preserves 

the long-term trend of infectious disease models. 

Regarding the current pandemic scenario in China, 

we compile news reports. Textual data pertaining to 

control and preventative strategies is retrieved from 

this data set. A pretrained natural language 

processing model is used to transform the retrieved 

profiles and titles into feature vectors. Figure 3 shows 

the results of our efforts to accurately estimate the 

number of infections by extracting characteristics 

from news sources using natural language processing 

(NLP) and combining them with an LSTM network. 

This allows us to update the deviation of the infection 

rate in the ISI model. 
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Fig. 3. Prediction model based on the infection rate and NLP features (MLP: multilayer perceptron, 

NLP: natural language processing, LSTM: long short-term memory network, and CDC: centers for 

disease control). 

A. Extracting News Features We arrange the 

COVID-19-related material by date, province, and 

city, and then filter out case reports and linked 

overseas news in order to obtain the key elements of 

the news. In order to provide strong and succinct 

features, feature extraction is limited to the title and 

major substance of each news piece in practice. 

Using a pretrained model of the BERT language 

model (RoBERTa) [34], developed by researchers at 

the University of Washington and Facebook AI, text 

characteristics are extracted for each provided 

Chinese news content. Combining BERT with 

WordPiece segmentation, the Chinese Whole Word 

Masking approach, and other methods, this model 

can break down whole words into smaller ones. This 

model is capable of producing respectable feature 

extraction results with very little training. To avoid 

overloading and accomplish efficient training, the 

news headlines and primary content are acquired 

separately as input. The text is encoded using the 

final hidden layer of the pretrained model. Next, we 

combine the 768-dimensional title and text encodings 

to create a 1536-dimensional natural language 

processing feature vector, where each vector 

represents a news item. In order to obtain precise 

daily forecasts throughout the country and in various 

cities and regions, the dataset is split into two parts: 

one that includes news from every area, and another 

that contains news from every province. To make 

sure there's news every day, it's sorted by day, and 

the NLP feature vector is the average of all the news 

features from that day.  

A Long Short-Term Memory (LSTM) Network With 

the Use of Natural Language Processing and the 

Infection Rate Despite their ability to fit complicated 

distributions, deep neural networks have a tendency 

to overfit when not adequately supervised. Features 

of infection rates do not change with time since they 

are dependent on the proportion of each element that 

grows. Epidemic models that rely on infection rates, 

on the other hand, are ill-equipped to foretell the 

effects of policy shifts and emergencies, or to make 

adjustments to their predictions in the near term. So, 

let us present the LSTM. 
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Fig. 4. LSTM network based on NLP features. 

Figure 4 depicts a network that uses natural language 

processing (NLP) elements to predict both the present 

policy landscape and social media. It will then be 

possible to guarantee both the short-term flexibility 

and the long-term stability. We expect the real 

infection rate to be β(t) in the ISI model, and the 

regression-affected infection rate to be ˆ β(t) 

according to the exponential function. To forecast the 

discrepancy between the regression and actual 

infection rates, we use the neural network. As the 

bias feature for prediction, we use the label of day t, 

denoted as y(t) = β(t)− ˆ β(t). Consequently, the 

LSTM network may be used in conjunction with the 

ISI model. We integrate the natural language 

processing (NLP) characteristics presented in Section 

IV-A with the bias features to account for the 

influence of news and policy. For the purpose of 

encoding hidden states and temporal information, we 

use LSTM. In order to convert the infection and NLP 

characteristics into 32-dimensional vectors, we use a 

one-layer perception model that includes a fully 

linked layer and a leaky ReLU activation function. 

This method guarantees that our network is enhanced 

by identical characteristics. Let W1 and W2 be the 

weights of the first two perception models, given 

infection features s1 and NLP features s2. Here is the 

function g(·) that combines convolution with leaky 

ReLU: 

 

 

F1 and f2 are the processed features that are 

combined to form f, a mixed feature. For each time 

stamp t, let f(t) be the mixed feature, supposing that 

the hidden state from timestamp t−1 is equal to 

isht−1. Function In order to convert the hidden state 

into a prediction, LSTM incorporates a fully linked 

layer and an LSTM network. The updated hidden 

state h(t) and the network output x(t) are both defined 

at time t. After that 

 

 

where the network's weight is denoted by Wl. During 

training, we optimize using gradient descent and the 

Adam optimizer [35]. Subsequently, the loss function 

is defined as the mean-square error between the 

prediction and the label. 

 

V. EXPERIMENTAL 

RESULTS 

Here, using data from two sources, we assess how 

well the suggested model fits the pandemic. First, the 

health commissioners at the federal and provincial 

levels are the primary sources of information about 

cases of infection, cases of suspected infection, cases 

of cure, and cases of death. Two, natural language 

processing (NLP) data comes from dxy.com [36], 

social media, and news media. Prior to categorizing 

the media by dates and applicable provinces, we filter 

sickness reports and overseas news. A. Examining 

the Relationship Between the Infection Rate and the 

Cumulative Daily Confirmed Cases Current epidemic 

models assume a periodic infection rate for viruses 

[37]. Since identified patients are no longer 

contagious, we may infer that the bulk of the 

infection on day t originated from the sum of all 

newly confirmed cases during the last k days, since 

they are medically separated. In order to delve further 

into the ever-changing transmission rules of the virus, 
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we use an epidemic model that is based on a 

retrospective approach to examine the epidemic data 

from Beijing, Shanghai, and Hunan. Due to changes 

in diagnostic criteria and a shortage of medical 

resources, several individuals were overlooked or 

misdiagnosed in the early stages of COVID-19. The 

pandemic statistics became somewhat contaminated 

due to these circumstances. We investigate the laws 

of development of the COVID-19 infection rate and 

choose Shanghai as our research object because of its 

relatively extensive public health facilities, which 

helps to limit the influence of noise. At first, we 

choose k time scales to represent the relationship 

between the infection rate β1 and the total number of 

confirmed cases. Then, based on the outcomes of the 

predictions, we examine the infection rate of the 

confirmed cases at various time intervals. In order to 

assess the rules of viral infection and deduce the 

epidemic's evolutionary tendency, the experimental 

data are very important. Figure 5 displays the 

outcomes of the exponential fitting curves of the 

predicted infection rate in Shanghai vs the various 

values of k. We also utilize the expected cumulative 

confirmed cases to find the optimal value of k for 

calculating the infection rate, so we can evaluate this 

value objectively. Figure 6 displays the mean 

absolute error (MAE) curves for Shanghai, which 

compare the number of actual cumulative confirmed 

cases with the number of expected cumulative 

confirmed cases. Using data collected between 

January 23, 2020, and February 18, 2020, the 

infection rate for each epidemic model is calculated 

using exponential fitting. Fig. 5 and the Shanghai 

curve in Fig. 6 demonstrate that when k is small (k = 

1-3), there is no apparent regularity in the distribution 

of the infection rate β1, and there is a relatively 

substantial inaccuracy in the forecast of the number 

of cumulative confirmed cases. According to these 

results, the effect on the infection rate of newly 

confirmed cases of dates close to day t is small. The 

distribution of the infection rate β1 gets more 

concentrated when k climbs progressively from 4 to 

6, and the epidemic model's estimate error falls 

significantly. This discovery establishes that the trend 

of the infection rate β1 is becoming closer to reality, 

and the dates that have a major impact on day t are 

being included in the model. The distribution of β1 

stops changing significantly when k is more than 7, 

yet the epidemic model's MAE curve starts to rise, 

indicating that the trend of β1 starts to differ from 

reality. This discrepancy suggests that the model has 

been contaminated with noisy data, meaning that the 

patients at day t −k have been separated and do not 

infect the S group at day t. And to make sure the 

regulations up there are applicable elsewhere, we set 

up two epidemic models using patient data from 

Beijing and Hunan. Figure 6 also displays the MAE 

curves for the two areas. The epidemic models' 

output shows that the two areas' infection rates 

exhibit an inverted bell curve-like exponential fitting, 

further confirming that the influence of newly 

confirmed cases each day on the infection rate 

changes depending on the date. During the interval 

from t−10 to t−1, the infection rate of time t is greatly 

affected by the new confirmed cases in the 

intermediate phase. Although the experimental data 

from the aforementioned cities and provinces show 

that the pandemic is generally trending upwards, 

Wuhan had a dramatic spike in the number of newly 

confirmed cases per day after a modification in 

diagnostic criteria on February 12, 2020. In order to 

address this issue, we first construct an epidemic 

model using data collected in Wuhan between 

January 23, 2020, and February 11, 2020, and we use 

the exponential function to determine the general 

trend of the infection rate's progression. Figure 7 

shows that Wuhan's infection rate fitting curve is 

comparable to Shanghai's and Beijing's, indicating 

that the epidemic pattern in Wuhan is likewise 

steady. Consequently, it is fair to preprocess the 

Wuhan anomaly data points using the data balancing 

approach outlined in Section III-C. B. Examining 

Various Time Intervals and Their Impact on the 

Infection Rate of New Confirmed Cases The 

infection rates of patients in incubation at various 

time intervals vary [38], [39]. The infection rate of 

newly confirmed patients on day t may be affected 

differently by the new daily confirmed cases from 

day t−k to day t∗1. In this article, we look at the 

impact and timing 
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Fig. 5. Fitting curves of infection rate β1 in Shanghai. (a) k = 1. (b) k = 2. (c) k = 3. (d) k = 4. (e) k = 5. (f) k = 6. 

(g) k = 7. (h) k = 8. (i) k = 9. (j) k=10. 

 

Fig. 6. MAE curves between the number of actual cumulative confirmed cases and the number of predicted 

cumulative confirmed cases in Shanghai, Beijing, and Hunan. 

rules governing the spread of epidemics in various urban areas and regions by means of (2). We start by looking at 

the correlation between the previous 10 days' worth of confirmed cases and the number of new cases in Beijing, 
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Shanghai, Zhejiang, and Hunan on day t. Just like the findings in the previous section, when the distribution of 

weights is taken into account, the curve of parameter α typically resembles a bell curve. Figure 8(a) shows that the 

new confirmed cases from days t −8 to t −3 contribute more to the new confirmed cases on day t than the new 

confirmed cases from days t−10 to t−9 and from days t−2 to t−1. The distribution of αi exhibits a tendency where 

the value is tiny on either side and big in the center when (2) is applied to the estimated parameter β2(t). On the 

other hand, the fact that the value of αi is almost zero on day t−10 suggests that the earlier confirmed instances little 

impact the confirmed cases on day t. For most provinces and cities, the research finds that αi is bigger on days t−8 

tot−3, but less on days t−10 to t−9 and days t−2 tot−1. Thus, around 5.5 days is the typical duration of an illness. We 

use a grouped multiparameter technique to balance the parameters in order to prevent the under- or over-saturation 

phenomena discussed in Section V-A. In accordance with (3), the weights for the dates ranging from t−8 to t−3 may 

be defined as γ1, and similarly, for the days t−10 to t−9 and t−2 tot−1, the weights can be defined as γ2. Then, using 

the formula (3), we can 

 

 

 

Fig. 7. Fitting curves of infection rate β1 in Wuhan. (a) k = 1. (b) k = 2. (c) k = 3. (d) k = 4. (e) k = 5. (f) k = 6. 

(g) k = 7. (h) k = 8. (i) k = 9. (j) k=10. 

in which 6γ1+4γ2= 1. These findings are shown in Figure 8 as a consequence of this equation. Figure 8 indicates 

that it is consistently distributed throughout several provinces and cities. It is evident from all the curves in Figure 8 

that the values of γ2 are consistently lower than the values of γ1. In the case of Hunan and Zhejiang, γ2 is almost nil. 

We treat the values of γ2 for other cities as random noise and put γ2 equal to zero. At last, we may rewrite (3) in the 

following way: 
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C. Estimation of the Total COVID-19 Cases We validate our approach throughout the nation, including in Wuhan, 

Beijing, and Shanghai. From January 23, 2020 to February 18, 2020, the preprocessed infection numbers are used as 

the training data to forecast the infection counts from February 19, 2020 to February 24, 2020. We evaluate the 

conventional IS model, the ISI model, the ISI model with the LSTM network, and the ISI model with NLP features 

and the LSTM network to confirm our model's efficacy and the impact of public awareness and government 

regulation on epidemic prevention. The LSTM network makes advantage of natural language processing 

characteristics retrieved from both recent and historical news. Mean absolute percentage error (MAPE), MAE, and 

daily projection for Wuhan, Beijing, 

 

TABLE I COMPARISON OF ACTUAL CONFIRMED NUMBER AND PREDICTED NUMBER IN 

WUHAN 

 

TABLE II COMPARISON OF ACTUAL CONFIRMED NUMBER AND PREDICTED NUMBER IN 

BEIJING 

 

Shanghai and around the nation. For the sake of clarity, we summarise the prediction findings, and Tables I–IV 

provide the resulting comparisons. 
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Fig. 8. Infection rate of the new confirmed cases from day t−10 to t−1 to new confirmed cases on day t in the 

different provinces or cities and the average effect, where “Average” denotes the average contribution of 

newly confirmed cases from t−10 to t−1 to new confirmed cases on day t in four regions: Beijing, Shanghai, 

Zhejiang, and Hunan. (a) Average. (b) Beijing. (c) Shanghai. (d) Zhejiang. (e) Hunan. (f) Wuhan. 

 

TABLE III COMPARISON OF ACTUAL CONFIRMED NUMBER AND PREDICTED NUMBER IN 

SHANGHAI 

 

TABLE IV COMPARISON OF ACTUAL CONFIRMED NUMBER AND PREDICTED NUMBER AT THE 

COUNTRYWIDE SCALE 
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For the three example cities shown in Figure 9, our model produces respectable predictions. The conventional SI 

model is much outdone by our ISI model. The LSTM network is unstable since it does not consistently improve 

compared to the ISI model. Among the models tested, the ISI+NLP+LSTM model produced the most accurate 

forecast. This discovery demonstrates that natural language processing characteristics provide further data and 

direction for illness prognosis.  

To summarize, this article proposes a hybrid AI model for COVID-19 prediction based on the ISI model. The model 

incorporates an NLP module, which brings crucial information about the major public support and government 

efforts into the prediction calculation process. As a result, the predicted outcomes are more in line with the actual 

trend of the epidemic's development. 

Section D: The Base Reproduction Number R0 An epidemiologic measure that is often used to characterize the 

transmissibility of an infected patient is the basic reproduction number R0. Here, R0(t) is defined as the mean 

number of secondary cases that one confirmed case at time t would generate in an all susceptible population. The 

following formulation is based on (9): 

 

 

The secondary cases infected by the new daily confirmed cases at time t consist of β4(t+3)I(t), β4(t+4)I(t),..., 

β4(t+8)I(t), as shown in the equation above. So, the fundamental reproduction number at time t is 

 

 

Figure 10 shows the results of our analysis of the fundamental reproduction number R0's evolutionary patterns in 

Beijing, Shanghai, Zhejiang, Hunan, and Wuhan. The values of 
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Fig. 9. Comparison of actual confirmed number and predicted number in three typical cities and at the 

countrywide scale. (a) Wuhan. (b) Beijing. (c) Shanghai. (d) Countrywide 

 

Fig. 10. Curves of the basic reproduction number R0 for different provinces and cities in China. 

When control and preventative measures are put into place, R0 for all areas decreases over time. At a pivotal 

juncture in the 2020 COVID-19 pandemic, the Wuhan region was quarantined on January 23. We look at additional 

R0 numbers for Wuhan to see how the city lockdown affected R0. Locking down the city was crucial in containing 

the COVID-19 outbreak, as seen in Fig. 10, where the R0 curve in Wuhan peaked on January 24, 2020, and then 

decreased quickly. We also forecast the total number of confirmed cases in Wuhan and China using the suggested 

hybrid AI model; the data used for this purpose was gathered between January 23, 2020, and February 18, 2020. 

Based on the cumulative confirmed cases prediction curves provided in Figure 11, the total number of cases for 
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Wuhan up to the end of March would be 482,247. Nevertheless, the figure would rise to 102769 if Wuhan were to 

be quarantined on January 27, 2020, four days after the actual time. 

 

VI. CONCLUSION 

New daily confirmed cases at various time intervals make varying contributions to susceptible infections, according 

to this paper that seeks to anticipate the trajectory of the COVID-19. An analysis is conducted to determine the 

effect of confirmed cases in the days leading up to time t on the newly confirmed cases at time t. We use this 

information to suggest a grouped multiparameter approach that categorizes confirmed cases' infection rates 

according to time. We continue by deriving the multi-parameter ISI model that was suggested. Using natural 

language processing (NLP) technology, this article extracts relevant news items, such as steps to control epidemics 

and residents' knowledge of the need to avoid epidemics, and encodes them into semantic characteristics. In order to 

update the infection rate provided by the ISI model, these characteristics are then supplied into the LSTM network. 

To sum up, this article proposes a hybrid AI model for COVID-19 prediction based on the ISI model. The model 

incorporates an NLP module, which has brought important information facilitated by the joint efforts of federal and 

state governments, as well as the public's massive support in the prediction calculation process. Consistent with real 

epidemic cases, the model's prediction results demonstrate that the suggested hybrid model outperforms earlier 

models in analyzing the virus's transmission law and development trend, and that related news language information 

processing can 

 

 

Fig. 11. Prediction curves of the cumulative confirmed cases in (a) Wuhan and at the (b) countrywide scale. 

contribute to making the prediction model more accurate. Furthermore, we provide a reliable approach to forecasting 

future public health events' transmission laws and development trends. In order to set up a state-of-the-art system for 

preventing epidemics, this paper demonstrates that data release efficiency, openness, and transparency are crucial. 
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