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Abstract

Though the 2019 coronavirus illness (COVID-19) outbreak began in late December 2019 and is now being
contained in China, it continues to spread quickly in many other parts of the globe. Research on the epidemiology
and potential future developments of the pandemic must be undertaken immediately. To forecast the spread of
COVID-19, this paper suggests a hybrid Al model. Firstly, an improved susceptible-infected (ISI) model is
suggested to estimate the diversity of infection rates in order to analyze transmission laws and development trends,
as standard epidemic models regard all persons with coronavirus as having the same infection rate. The second step
in developing a hybrid Al model for COVID-19 prediction is to include the ISI model with a natural language
processing (NLP) module and an LSTM network. This will allow us to account for the impact of control and
preventive efforts as well as the rise in public awareness of the need of prevention. The experimental findings, based
on epidemic data from many typical Chinese provinces and cities, demonstrate that the real laws of epidemic
transmission are more accurately reflected by the greater infection rate experienced by infected people between the
third and eighth days after infection. In comparison to conventional epidemic models, the suggested hybrid Al
model achieves MAPPs of 0.52% for the next six days in Wuhan, 0.38% in Beijing, 0.05% in Shanghai, and 0.86%
nationwide. This is in addition to a significant reduction in prediction errors.

Index Terms

Coronavirus disease 2019 (COVID-19) prediction, epidemic model, hybrid artificial-intelligence (AI) model, natural
language processing (NLP).

I. INTRODUCTION

The 2019 coronavirus disease outbreak (COVID-19)
occurred during China's spring festival season,
coinciding with its rapid national expansion. There
was a shortage of medical resources, a medical
community that was unfamiliar with the novel
coronavirus, and the very irregular nature of the main
stage of the epidemic, all of which contributed to the
ineffective suppression of the COVID-19 throughout

its transmission [1]. It was officially confirmed on
January 20, 2020 [2] that the COVID-19 may be
communicated from person to person. As a result,
China's cities and provinces have taken
unprecedented steps to prevent and control the spread
of the virus, with the airport and train terminals in
Wuhan being closed on January 23, 2020. These
efficient methods of prevention and management
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have led to a steady rise in public understanding of
the need of taking precautions against epidemics. The
rate of new infections is now declining sharply. For
sixteen days in a row, the number of newly
confirmed cases outside of Hubei fell from February
3, 2020 to February 19, 2020. Meanwhile, new
infections in Hubei have been steadily declining since
February 12, 2020, and the number of patients who
have been cured has been on the rise. Although there
has been some progress in preventing and controlling
the pandemic in China, other nations and areas are
still facing a grave scenario, particularly in Europe,
Iran, South Korea, the US, and Japan. If the
pandemic is to be successfully contained, every
nation or area must devise specific plans for
prevention and control. Research into the causes and
dynamics of epidemics is, hence, essential. To
effectively avoid and manage this pandemic, it is
important to analyze the development law and
anticipate the trajectory of COVID-19. The use of
epidemic models allows for the study and prediction
of the illness's development trend, which in turn
guides the creation of control and preventative
measures in the event of a large-scale infectious
disease epidemic and the initiation of a significant
public health emergency. The most popular
traditional models for epidemics are susceptible-
infected (SI), susceptible-exposed-infected-recovered
(SEIR) and susceptible-infected-recovered (SIR) [3]-
[5]. In these models, "S," "E," "I," and "R" stand for
the numbers of susceptible individuals, incubation
period participants, infectious cases, and recovered
individuals, respectively. The SI, SIR, and SEIR
models use differential equations to depict the I-S
connection. These A number of illnesses, including
Ebola and SARS, have been effectively predicted
using models due to their robust disease prediction
capabilities [6]-[10]. The critical nature of the
COVID-19 pandemic makes it all the more crucial to
track changes in the daily confirmed case count in
order to deduce the epidemic's trajectory. Hence, the
effect of the pattern of new infections on epidemic
propagation must be our primary concern. In
addition, the article does not take into account the
impact of death and cure rates on the epidemic trend
as these two variables are not directly related to the
number of new confirmed cases per day.
Conventional epidemic models project the outbreak's
trajectory by first analyzing the infection rate in
relation to the changing number of infections. On the
other hand, these models assume that the infection
rate for coronavirus is constant throughout all cases.
There are limits to their prediction findings since they
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can only provide broad trends. Transparent reporting
of the epidemic, implementation of prevention and
control measures, and reinforcement of residents'
prevention awareness have accelerated the
containment of the virus. The government's
prevention and control measures have a significant
impact on the containment of the epidemic's
development trend. Clearly, reliable prediction
cannot be achieved with just epidemic data. In order
to handle public health crises, we need to create an
epidemic model that is based on data. By including
news information elements, we may enhance the
accuracy of model prediction, overcome the
constraint of classic epidemic models that rely on a
single component, and confirm that the government's
preventative and control methods are working. In
order to address this issue, our epidemic model
incorporates a long short-term memory (LSTM)
network with a natural language processing (NLP)
module. This allows us to update the infection rate
and enhance the model's predicted accuracy.
According to Hochreiter and Schmidhuber [11], Long
Short-Term Memory (LSTM) is a traditional RNN.
The continuous error carousel unit is an LSTM
innovation that helps with training-related issues
including gradient explosion and disappearance. For
long-sequence data classification, processing, and
prediction, LSTM is the way to go [13]-[16] since it
outperforms classical RNN [12] in capturing
sequence dependencies over the long term. Many
tasks have seen increased application of LSTMs in
recent years, including natural language processing
[17]-[20], picture production [21], [22], and video
analysis [23], [24]. This article presents an improved
susceptible-infected (ISI) model based on an
examination of the coronavirus infection rate, models
the capacity of viruses to infect susceptible persons
according to various times after infection, and
focuses on the analysis of the infection rate of
individuals. This article presents the important
information about the great efforts led by the central
and local governments, as well as the massive
support participation from the public into the
prediction calculation process, and explains how the
hybrid artificial intelligence (AI) model based on the
proposed ISI model predicts the COVID-19. The
model includes an NLP module and an LSTM
network. In addition, the study forecasts the
epidemic's trajectory by analyzing its evolution
through the lens of the suggested hybrid prediction
model. Experimental results using epidemic data
from multiple representative Chinese cities and
provinces demonstrate that the suggested hybrid
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model outperforms more conventional approaches to
epidemic modeling in terms of accuracy and
robustness, and can serve as a foundation for
estimating the law of virus spread. Furthermore, by
incorporating news information into our hybrid Al
model, we were able to produce prediction results
that were more in line with the actual trend of
epidemic  development. This highlights the
importance of openness, transparency, and efficiency
in data releasing for the establishment of a modern
epidemic prevention system. The following is the
structured rest of the article. The suggested Al
model's structure is shown in Section II. In Section
III, the ISI epidemic model is suggested for the
purpose of studying the transmission laws of
epidemics. An LSTM model that is based on natural
language processing (NLP) is provided in Section IV
for accurate prediction. Results from experiments
using epidemic data from a number of representative
Chinese provinces and localities are presented in
Section V. You may find the conclusion in Section
VL

II. FRAMEWORK OF THE
HYBRID AI MODEL

Current epidemic models predict that in the future,
unquarantined coronavirus patients will be the source
of infection for newly confirmed cases every day.
Predicting the number of new confirmed cases each
day is therefore accomplished by multiplying the
expected infection rate by the number of sick patients

ljaiem.com/June 2025/ Volume 14/Issue 1/Article No-1/857-874

ISSN: 2319-4847

who are not quarantined, which is considered the
basis by most epidemic models [25]-[27]. On the
other hand, coronavirus infection rates change at
various points of time after infection [28]. Due to
their assumption that all infected people have the
same infection rate, traditional epidemic models fail
to capture the pattern of an epidemic's progression.
The majority of newly confirmed cases right now are
due to infections that occurred in the last few days,
despite efforts to prevent and limit the spread of the
disease. Since cured and died patients do not affect
the number of new confirmed cases in any way, they
are not included in the epidemic model that is
established in this article. On this premise, we
provide a grouped multiparameter model for the ISI
pandemic that is retrospective in nature. To
determine the infection rate and build an epidemic
model, the retrospective method relies on a ratio of
the number of newly confirmed cases at time t to the
total number of new confirmed cases across all time
scales prior to time t. In addition, the model's
prediction results are wused to examine the
significance of various time scales with respect to the
newly confirmed instances at time t. To measure the
infection rate of infected cases at various periods, the
ISI model uses grouped multiparameter variables that
figure out how confirmed cases at different times
before t affect confirmed cases at time t. The next
step is to examine the infectious illness development
law using the upgraded model. Aside from that, the
suggested ISI model is employed in conjunction with
the LSTM network to calculate the number of
infections and the variation in infection rates in the
epidemic model.
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Fig. 1. Hybrid Al model for COVID-19 prediction by using all historical data.

sick individuals. In order to examine the impact of
government control measures, the media's open
reporting, and the growing public awareness of the
need to avoid epidemics, this article employs
pretrained natural language processing models to
extract characteristics from pertinent news stories in
different provinces and cities. After that, the LSTM
network is used to fix the discrepancy in the infection
rate projected by the ISI model. This model could
forecast the number of cases based on the laws of
transmission and the pattern of development. Figure
1 depicts the suggested structure.

III. ANALYSIS OF THE LAWS
OF EPIDEMIC TRANSMISSION

There is still a lack of thorough examination in
traditional epidemic models, which assume that the
number of new infectious cases is proportional to the
number of infected and susceptible individuals.
Infectious illnesses have distinct life cycles that
people experience [29]. In order to study the
epidemic's infection law, it is necessary to identify
the temporal distribution of the infectious sources of
new confirmed cases everyday. Using fresh
confirmed data as a basis, this essay models the
epidemic's propagation rules and development
tendency. This article does not take into account
death and cure rates since they are unrelated to the
amount of newly confirmed cases. We may assume

that almost all newly confirmed cases of COVID-19
are caused by individuals who were confirmed during
the last 14 days, as the observation period for this
virus is 14 days [30]. A majority of the patients who
are now being studied have been placed in
quarantine, closely monitored, and tested using a
nucleic acid reagent. Most of the confirmed patients
were quarantined at least three days before the
confirmation, so they cannot infect others. This
means that most of the confirmed patients cannot be
infected by another confirmed case that was
confirmed eleven days ago, since patients are
required to obtain a minimum of two positive results
before they are confirmed as positive for COVID-19.
So, this article looks at the infection rate of new daily
confirmed cases in the last 10 days compared to the
confirmed cases of day t for every day t. The
following symbols are defined for an improved
analysis: S(t) is the count of susceptible individuals
on day t, I(t) is the total number of confirmed cases
up to that point (inclusive), and I(t) =I(t)—I(t—1) is the
count of newly confirmed cases on that day. We need
to find the window of opportunity for the confirmed
cases to infect the newly confirmed patients at day t
in order to have a full picture of how the infected
cases affect subsequent affected people. The rules of
transmission may then be determined by comparing
and contrasting them. In this essay, we will assume
that from day t—1 to day t—10, a confirmed individual
infects the patients who confirmed on day t. We
employ the retrospective technique to examine the
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temporal laws of epidemic transmission in the last
few days in order to establish at what stage the
present new daily confirmed patients are infected at a
high infection rate. We analyze the temporal laws of
COVID-19 transmission in detail and apply it to
many infection periods to construct an improved
multiparameter epidemic model over the previous 10
days. The computer model of the ISI outbreak is
shown in Fig. 2.
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Fig. 2. ISI model.

based on the last k days. But these models don't look
at the transmission of epidemics in detail. The
general rules of epidemic development state that, on
day t, early confirmed patients (e.g., day t—5) are
more likely to infect individuals diagnosed on day t,
in comparison to patients confirmed at the adjacent
period (e.g., day t—1). In order to obtain the laws of
COVID-19 transmission with improved macroscopic
guiding significance for the overall trend estimation
of epidemic development, one can model on the
infection rate of the cumulative number of confirmed
cases in the past k days relative to the confirmed
cases on day t. We examine the impact of cumulative
confirmed cases at various dates on the calculation of
the infection rate using the retrospective technique.
Based on the total number of confirmed cases over
the last k days, we calculate the infection rate of
newly confirmed cases and compare it to the
infection rate in other locations and time periods. The
following is the equation:

k

1) =1 — D+ k)Y Al —i), k=12,...
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A. Infection Rate Correlation Model Based on the
Retrospective Approach The prevailing assumption
in traditional epidemic models is that confirmed cases
on a given day are a direct result of confirmed cases
in the preceding several days. Previous studies on
epidemics have often used models that assume
transmission is impacted by a fixed number of days,
as shown in [31], [32].

In this context, B1(t,k) represents the infection rate,
which is defined as the sum of all confirmed cases
from day t—k to day t—1, divided by the total number
of confirmed cases on day t, as a function of k, where
i=1. The sentence illustrates the connection between
the quantity of newly confirmed cases I(t) on day t
and the quantity of new confirmed cases k j=1 NI(t—k)
on the previous k days. In order to examine the effect
of the total number of confirmed cases over the last k
days on the number of new confirmed instances on
day t, the first step is to find out the generally stable
connection between I(t) and k i=1
I(t—1). This is known as B1(t,k). Our goal is to clarify
the rules of epidemic propagation so that they may be
fairly used and to provide assistance with further
research. Secondly, all provinces and the nation as a
whole may have their parameter ~ f1(t,k) determined
by (1). Since the rate of infection during an epidemic
evolves exponentially, this article estimates the
spread of the epidemic by using the exponential
function L(t) = axe-bt to fit = PI(tk). Both
parameters, a and b, must be greater than zero for the
exponential function to be defined in the formula.
And lastly, since patients cannot be adequately
confined during the incubation period, the infection
rate is high. Hence, the section estimates B1(t,k) by
progressively raising k, and the model is updated to
reflect the number of additional confirmed instances
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at an earlier time point. whether the model's
predictions hold, we may next determine whether the
newly confirmed cases at each time point will infect
the newly confirmed patients on day t. As the
epidemic spreads, it is also possible to determine the
rules of patient evolution at various time intervals.B.
Grouped multiparameter influence model of infection
rate According to this article, the stringent control
and quarantine procedures ensure that infected cases
cannot infect as many vulnerable individuals once
they are contained. Newly confirmed patients in the
previous k days are therefore likely to infect newly
confirmed cases on day t. The rate of infection is
strongly correlated with the duration of patient
infection [33]. Infectious rates may therefore vary
among newly confirmed cases at various points in the
previous k days, as shown on day t. Based on (1), we
may deduce that the most recent couple days are
likely the earliest feasible infection time. From day
t—k to day t—1, we assign various weights to the
number of new confirmed cases each day in order to
quantify the contribution of new confirmed cases at
different periods to the infection rate at time t. This
allows us to further evaluate the difference. The next
step is to use the weighted cumulative confirmed
number, the epidemic model, to estimate the infection
rate. Two days next to each other are considered a
propagation unit in order to simplify the model, and
each day is given the same weight ai. After that, as
seen in (2), multiparameter pandemic modeling is
executed. While reducing the search area of the
weight and the model's complexity, the model makes
it more resilient by avoiding the abrupt change in
weight induced by a single data irregularity.

oy =Hr—1)
k2
+ Bt k) Y (e AR — 20+ 1) + AT — 20)))

i=1

where 2 Lffi o= 1.
when i equals 1, ai equals 1. This section proposes a
model that, building on the previous epidemic model,
takes into account the transmission correlation
between the total number of confirmed cases over the
past k days and the number of new cases on day t by
taking into account the difference in the infection rate
of new confirmed cases over the past k days
compared to the new confirmed cases on day t. The
process starts with randomly initializing many groups
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with various weights ai, and then a multiparameter
epidemic model is set up using (2). The more
accurate the model's predictions, the more closely the
associated weights reflect the actual infection law.
Lastly, by comparing the weights given to various
time periods, we may deduce the infection rate that
significantly contributes to the viral infection. Using
the value of ai derived from (1) and (2), we can
determine the link between the newly confirmed
cases on day t and the new confirmed cases on days
t=10 to t—1. On the other hand, underfitting may
occur with insufficient parameters (i.e., (1)) and
overfitting is easy with an excess of parameters (i.e.,
(2)). Accordingly, we use the aforementioned
findings to further equalize the number of factors.
The  collection of days  designated by
{t=i|i=1,2,...,10}separated into two sets, with set A
consisting of the days that had a stronger influence on
the number of new confirmed cases on day t and set
B consisting of the other days. Like in, set A is
assigned a weight of y1, while set B is assigned a
weight of y2.

1) = 1t = 1)+ Ba)| w1 D AT + 92 ) Al)

e tyel

In a set, || represents the number of elements, and
v1|A|+y2|B|=1. The infection rate is determined using
the formula (3). Method for Data Preprocessing (C)
According to the Suggested Model As a result of a
lack of training and resources and an incomplete
knowledge of the new coronavirus's symptoms,
diagnostic criteria for patients were revised
nationwide during the first stages of the COVID-19
epidemic. All provinces' epidemic data had a
significant amount of noise due to these causes. The
diagnostic criteria in Hubei Province were updated to
include clinical diagnosis with the introduction of the
fifth edition of the treatment and diagnosis plan on
February 12, 2020. The new daily confirmed cases of
Wuhan surged to 13,436 on that particular day
because to this clinical diagnosis. Subsequent
modeling is greatly hindered by these out-of-the-
ordinary and noisy data values. Two common ways
to handle out-of-the-ordinary data points include data
cleaning, which involves deleting them, and the
interpolation-based technique. But there are a lot of
problems with these approaches. Due to the very
short time scale of the epidemic data, data cleaning
results in significant data loss and lowers the
accuracy of the overall trend estimate of the epidemic
model. However, the accuracy of short-term
parameter estimate is affected and the dynamic
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development laws of irregular dates are lost when
using the interpolation-based technique, even if it
does not cause data loss. As a result, the majority of
the newly confirmed cases each day derived from
anomalous data points are actually missed diagnoses
during the early stages of the pandemic. Leaving out
this patient count will lead the model to overestimate
the severity of the epidemic in its early stages, which
will impact its ability to represent rules of evolution
that follow. This article suggests a "data balance"
approach using the epidemic model as a data
preprocessing module to mitigate the effects of
diagnostic criterion modifications for the out-of-the-
ordinary data points close to February 12, 2020. In
order to forecast the amount of new confirmed cases
on the anomalous dates, an epidemic model is first
constructed using data collected before to February
12, 2020. Secondly, the total number of patients that
were overlooked in the early stages is the sum of all
the data points that deviate from the prediction
findings. Third, in order to create "trend balance" in
the total data, these patients are equally split into
abnormal and normal dates. What follows are the
specifics of the implementation. Start the date with ts
and finish it with te if it contains anomalous data. In
order to construct an ISI epidemic model and forecast
the amount of new confirmed cases on out-of-the-
ordinary dates, use the formula I(t0)---I(ts). 2) Add
up the number of newly confirmed cases each day
and the number of missed diagnoses (M) to get the
total number of

the early stage N
I
M = (AI(r) — Af(t;))
=
Iy— 1 I

N = Z Al + Z AT,

I=In I=ly

3 Let o = M/N. 'Then, the rebalanced daia before f.

be oblained by the following equation:

A =1 +adAIH, t=1ty, ..., 06—
AP0 = (1 +a) AT, t=15 ..., 1.

Two major benefits characterize the data balance
preprocessing approach. 1) The calculating technique
of the infection rate B(t) will not alter the evolution
trend of B(t) if the number of new confirmed cases
before ts is raised a times, as stated in (1)-(3). After
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all the data points before te have been expanded, the
number of new daily confirmed cases I(t) before and
after the anomalous date may keep its development
trend; hence, the long-term fitting result of P(t)
becomes progressively stable. Ts is set to February
12, 2020, while te is set to February 13, 2020.

IV. PREDICTION OF
THE
DEVELOPMENT
TREND OF THE
EPIDEMIC

While the epidemic model does a good job of
predicting when infectious illnesses will spread, it
ignores important elements like control and
preventative efforts. Thus, in order to bring the
epidemic model's parameters up to date, new
mechanisms must be implemented. A common use of
the LSTM network is data prediction, but it is also
useful for modeling hidden variables (such as the
number of persons who may be infected). When it
comes to predicting the number of infected patients,
however, investigations have shown that the LSTM
network alone is ineffective. In light of the fact that
public knowledge of and response to epidemic
prevention efforts is highly correlated with actual
viral transmission, this article employs natural
language processing (NLP) technology to glean
semantic features from news articles covering these
topics. The LSTM network employs these
characteristics thereafter. The conventional epidemic
model predicts the number of infections by adjusting
the infection rate. In order to increase the accuracy of
epidemic prediction, this technique refreshes the
infection rate using news information and preserves
the long-term trend of infectious disease models.
Regarding the current pandemic scenario in China,
we compile news reports. Textual data pertaining to
control and preventative strategies is retrieved from
this data set. A pretrained natural language
processing model is used to transform the retrieved
profiles and titles into feature vectors. Figure 3 shows
the results of our efforts to accurately estimate the
number of infections by extracting characteristics
from news sources using natural language processing
(NLP) and combining them with an LSTM network.
This allows us to update the deviation of the infection
rate in the ISI model.
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A. Extracting News Features We arrange the
COVID-19-related material by date, province, and
city, and then filter out case reports and linked
overseas news in order to obtain the key elements of
the news. In order to provide strong and succinct
features, feature extraction is limited to the title and
major substance of each news piece in practice.
Using a pretrained model of the BERT language
model (RoBERTa) [34], developed by researchers at
the University of Washington and Facebook Al, text
characteristics are extracted for each provided
Chinese news content. Combining BERT with
WordPiece segmentation, the Chinese Whole Word
Masking approach, and other methods, this model
can break down whole words into smaller ones. This
model is capable of producing respectable feature
extraction results with very little training. To avoid
overloading and accomplish efficient training, the
news headlines and primary content are acquired
separately as input. The text is encoded using the
final hidden layer of the pretrained model. Next, we
combine the 768-dimensional title and text encodings
to create a 1536-dimensional natural language

processing feature vector, where each vector
represents a news item. In order to obtain precise
daily forecasts throughout the country and in various
cities and regions, the dataset is split into two parts:
one that includes news from every area, and another
that contains news from every province. To make
sure there's news every day, it's sorted by day, and
the NLP feature vector is the average of all the news
features from that day.
A Long Short-Term Memory (LSTM) Network With
the Use of Natural Language Processing and the
Infection Rate Despite their ability to fit complicated
distributions, deep neural networks have a tendency
to overfit when not adequately supervised. Features
of infection rates do not change with time since they
are dependent on the proportion of each element that
grows. Epidemic models that rely on infection rates,
on the other hand, are ill-equipped to foretell the
effects of policy shifts and emergencies, or to make
adjustments to their predictions in the near term. So,
let us present the LSTM.
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Figure 4 depicts a network that uses natural language
processing (NLP) elements to predict both the present
policy landscape and social media. It will then be
possible to guarantee both the short-term flexibility
and the long-term stability. We expect the real
infection rate to be P(t) in the ISI model, and the
regression-affected infection rate to be = P(t)
according to the exponential function. To forecast the
discrepancy between the regression and actual
infection rates, we use the neural network. As the
bias feature for prediction, we use the label of day t,
denoted as y(t) = B(t)— ~ P(t). Consequently, the
LSTM network may be used in conjunction with the
ISI model. We integrate the natural language
processing (NLP) characteristics presented in Section
IV-A with the bias features to account for the
influence of news and policy. For the purpose of
encoding hidden states and temporal information, we
use LSTM. In order to convert the infection and NLP
characteristics into 32-dimensional vectors, we use a
one-layer perception model that includes a fully
linked layer and a leaky ReLU activation function.
This method guarantees that our network is enhanced
by identical characteristics. Let W1 and W2 be the
weights of the first two perception models, given
infection features s1 and NLP features s2. Here is the
function g(-) that combines convolution with leaky
ReLU:

Ji = glsiz W)
J2 = gls2; Wa). (6)

F1 and f2 are the processed features that are
combined to form f, a mixed feature. For each time
stamp t, let f(t) be the mixed feature, supposing that
the hidden state from timestamp t—1 is equal to
isht—1. Function In order to convert the hidden state
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into a prediction, LSTM incorporates a fully linked
layer and an LSTM network. The updated hidden
state h(t) and the network output x(t) are both defined
at time t. After that

(x(), hig)) = Istm{f(r), it — 1y W)

where the network's weight is denoted by WI. During
training, we optimize using gradient descent and the
Adam optimizer [35]. Subsequently, the loss function
is defined as the mean-square error between the
prediction and the label.

V. EXPERIMENTAL
RESULTS

Here, using data from two sources, we assess how
well the suggested model fits the pandemic. First, the
health commissioners at the federal and provincial
levels are the primary sources of information about
cases of infection, cases of suspected infection, cases
of cure, and cases of death. Two, natural language
processing (NLP) data comes from dxy.com [36],
social media, and news media. Prior to categorizing
the media by dates and applicable provinces, we filter
sickness reports and overseas news. A. Examining
the Relationship Between the Infection Rate and the
Cumulative Daily Confirmed Cases Current epidemic
models assume a periodic infection rate for viruses
[37]. Since identified patients are no longer
contagious, we may infer that the bulk of the
infection on day t originated from the sum of all
newly confirmed cases during the last k days, since
they are medically separated. In order to delve further
into the ever-changing transmission rules of the virus,
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we use an epidemic model that is based on a
retrospective approach to examine the epidemic data
from Beijing, Shanghai, and Hunan. Due to changes
in diagnostic criteria and a shortage of medical
resources, several individuals were overlooked or
misdiagnosed in the early stages of COVID-19. The
pandemic statistics became somewhat contaminated
due to these circumstances. We investigate the laws
of development of the COVID-19 infection rate and
choose Shanghai as our research object because of its
relatively extensive public health facilities, which
helps to limit the influence of noise. At first, we
choose k time scales to represent the relationship
between the infection rate f1 and the total number of
confirmed cases. Then, based on the outcomes of the
predictions, we examine the infection rate of the
confirmed cases at various time intervals. In order to
assess the rules of viral infection and deduce the
epidemic's evolutionary tendency, the experimental
data are very important. Figure 5 displays the
outcomes of the exponential fitting curves of the
predicted infection rate in Shanghai vs the various
values of k. We also utilize the expected cumulative
confirmed cases to find the optimal value of k for
calculating the infection rate, so we can evaluate this
value objectively. Figure 6 displays the mean
absolute error (MAE) curves for Shanghai, which
compare the number of actual cumulative confirmed
cases with the number of expected cumulative
confirmed cases. Using data collected between
January 23, 2020, and February 18, 2020, the
infection rate for each epidemic model is calculated
using exponential fitting. Fig. 5 and the Shanghai
curve in Fig. 6 demonstrate that when k is small (k =
1-3), there is no apparent regularity in the distribution
of the infection rate 1, and there is a relatively
substantial inaccuracy in the forecast of the number
of cumulative confirmed cases. According to these
results, the effect on the infection rate of newly
confirmed cases of dates close to day t is small. The
distribution of the infection rate 1 gets more
concentrated when k climbs progressively from 4 to
6, and the epidemic model's estimate error falls
significantly. This discovery establishes that the trend
of the infection rate B1 is becoming closer to reality,
and the dates that have a major impact on day t are
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being included in the model. The distribution of B1
stops changing significantly when k is more than 7,
yet the epidemic model's MAE curve starts to rise,
indicating that the trend of Bl starts to differ from
reality. This discrepancy suggests that the model has
been contaminated with noisy data, meaning that the
patients at day t —k have been separated and do not
infect the S group at day t. And to make sure the
regulations up there are applicable elsewhere, we set
up two epidemic models using patient data from
Beijing and Hunan. Figure 6 also displays the MAE
curves for the two areas. The epidemic models'
output shows that the two areas' infection rates
exhibit an inverted bell curve-like exponential fitting,
further confirming that the influence of newly
confirmed cases each day on the infection rate
changes depending on the date. During the interval
from t—10 to t—1, the infection rate of time t is greatly
affected by the new confirmed cases in the
intermediate phase. Although the experimental data
from the aforementioned cities and provinces show
that the pandemic is generally trending upwards,
Wuhan had a dramatic spike in the number of newly
confirmed cases per day after a modification in
diagnostic criteria on February 12, 2020. In order to
address this issue, we first construct an epidemic
model using data collected in Wuhan between
January 23, 2020, and February 11, 2020, and we use
the exponential function to determine the general
trend of the infection rate's progression. Figure 7
shows that Wuhan's infection rate fitting curve is
comparable to Shanghai's and Beijing's, indicating
that the epidemic pattern in Wuhan is likewise
steady. Consequently, it is fair to preprocess the
Wuhan anomaly data points using the data balancing
approach outlined in Section III-C. B. Examining
Various Time Intervals and Their Impact on the
Infection Rate of New Confirmed Cases The
infection rates of patients in incubation at various
time intervals vary [38], [39]. The infection rate of
newly confirmed patients on day t may be affected
differently by the new daily confirmed cases from
day t—k to day t+1. In this article, we look at the
impact and timing
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Fig. 5. Fitting curves of infection rate p1 in Shanghai. (a) k=1. (b) k=2.(c) k=3. (d) k=4. (e) k=5. () k=6.
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Fig. 6. MAE curves between the number of actual cumulative confirmed cases and the number of predicted
cumulative confirmed cases in Shanghai, Beijing, and Hunan.

rules governing the spread of epidemics in various urban areas and regions by means of (2). We start by looking at
the correlation between the previous 10 days' worth of confirmed cases and the number of new cases in Beijing,
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Shanghai, Zhejiang, and Hunan on day t. Just like the findings in the previous section, when the distribution of
weights is taken into account, the curve of parameter a typically resembles a bell curve. Figure 8(a) shows that the
new confirmed cases from days t —8 to t —3 contribute more to the new confirmed cases on day t than the new
confirmed cases from days t—10 to t—9 and from days t—2 to t—1. The distribution of ai exhibits a tendency where
the value is tiny on either side and big in the center when (2) is applied to the estimated parameter 2(t). On the
other hand, the fact that the value of ai is almost zero on day t—10 suggests that the earlier confirmed instances little
impact the confirmed cases on day t. For most provinces and cities, the research finds that ai is bigger on days t—8
tot—3, but less on days t—10 to t—9 and days t—2 tot—1. Thus, around 5.5 days is the typical duration of an illness. We
use a grouped multiparameter technique to balance the parameters in order to prevent the under- or over-saturation
phenomena discussed in Section V-A. In accordance with (3), the weights for the dates ranging from t—8 to t—3 may
be defined as y1, and similarly, for the days t—10 to t—9 and t-2 tot—1, the weights can be defined as y2. Then, using
the formula (3), we can

bl
1) = 1(t = 1) + Pa(tdyy Y AB(z— i)

i=3

2 10k
+ Iﬁgl{ﬂ}—‘z(z Al(t—i)+ Y Allt — n) (8)

i=1 i=9

(a) (b) (c)
() (©) 0

(g) (h) (i (1]

Fig. 7. Fitting curves of infection rate f1 in Wuhan. (a) k=1. (b)) k=2. (¢) k=3. (d) k=4. (e) k=5. () k=6.
@ k=7.(h) k=8. () k=9. (j) k=10.

in which 6y1+4y2= 1. These findings are shown in Figure 8 as a consequence of this equation. Figure 8 indicates
that it is consistently distributed throughout several provinces and cities. It is evident from all the curves in Figure 8
that the values of y2 are consistently lower than the values of y1. In the case of Hunan and Zhejiang, y2 is almost nil.
We treat the values of y2 for other cities as random noise and put y2 equal to zero. At last, we may rewrite (3) in the
following way:
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C. Estimation of the Total COVID-19 Cases We validate our approach throughout the nation, including in Wuhan,
Beijing, and Shanghai. From January 23, 2020 to February 18, 2020, the preprocessed infection numbers are used as
the training data to forecast the infection counts from February 19, 2020 to February 24, 2020. We evaluate the
conventional IS model, the ISI model, the ISI model with the LSTM network, and the ISI model with NLP features
and the LSTM network to confirm our model's efficacy and the impact of public awareness and government
regulation on epidemic prevention. The LSTM network makes advantage of natural language processing
characteristics retrieved from both recent and historical news. Mean absolute percentage error (MAPE), MAE, and
daily projection for Wuhan, Beijing,

TABLE I COMPARISON OF ACTUAL CONFIRMED NUMBER AND PREDICTED NUMBER IN

WUHAN
., , . ; ISI+NLP -
sl 151 ISI+LSTM +LSTM GT
Feh. 19 ART 46260 45175 44970 L5027
Feh. 20 47030 45997 AGI0T 40604 L5346
Feh. 21 48130 Rl 46918 ALET2 L3660
Feb, 22 4UL0E 47138 476G 46163 46201
Feh, 23 970 47hH32 45045 4626 46607
Feh, 24 ST 47842 45538 468438 47071
MAE 2475000 T47.50 11.52.67 239,83 il
MAPE 5.35% 1.62% 2.43% 0.52% 1

TABLE II COMPARISON OF ACTUAL CONFIRMED NUMBER AND PREDICTED NUMBER IN

BELJING
sI IS ISILSTM OPNLF oo
: : . +LSTM
Feh, 19 396 404 304 395 395
Feh, 20 Aa9r 395 395 396 396
Feh. 21 ADD 396 306 347 399
Feh. 22 1z 396 A6 397 4949
Febh. 23 13 397 397 397 3949
Feh, 24 o 97 J98 347 400
MAL LTI 20T 2.0 0. 50 i1
MAPE (LB 0.54% 0.50%, 0,385 i1

Shanghai and around the nation. For the sake of clarity, we summarise the prediction findings, and Tables I-IV
provide the resulting comparisons.
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Fig. 8. Infection rate of the new confirmed cases from day t—10 to t—1 to new confirmed cases on day t in the
different provinces or cities and the average effect, where “Average” denotes the average contribution of
newly confirmed cases from t—10 to t—1 to new confirmed cases on day t in four regions: Beijing, Shanghai,
Zhejiang, and Hunan. (a) Average. (b) Beijing. (c) Shanghai. (d) Zhejiang. (¢) Hunan. (f) Wuhan.

TABLE III COMPARISON OF ACTUAL CONFIRMED NUMBER AND PREDICTED NUMBER IN

SHANGHAI

y . . . ISI+MNLP .

51 Is1 IS1+L5TM SLSTM GT
Feh, 1% RETH Sod A E hhE A3
Feh, 20 338 335 335 334 334
Feh, 21 340 335 335 334 334
Fich, 22 341 336 336 335 335
Feh, 23 343 A6 337 335 335
Fel, 24 344 336 337 3a5 335
MAE G000 100 1.5F 017 ]
MAFE L79%  0.30% 0.40% 0.05% 1]

TABLE IV COMPARISON OF ACTUAL CONFIRMED NUMBER AND PREDICTED NUMBER AT THE
COUNTRYWIDE SCALE
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. . . . ISI+NLP .

51 151 ISI+LSTM SLSTM oGT
Feh, 14 ot GRS Thhdn TRATD T4576
Feb, 20 TT431 TH0G ThfiGR TH116 Thdks
Feb. 21 TRTRT TT210 TTE21 THROT TH2RS
Feb, 22 THIRR TTRIT TR TT432 ThHEG6
Feh. 23 1049 TH2G0 THIOG TTATD TT150
Feh. 24 H1954 THEGT TAS10 THAI2 TTERA
MAE 284467 945,83 1444.00 GHD.00 0
MAFE AT 1.24% 1.59% 0.B6" 0

For the three example cities shown in Figure 9, our model produces respectable predictions. The conventional SI
model is much outdone by our ISI model. The LSTM network is unstable since it does not consistently improve
compared to the ISI model. Among the models tested, the ISI*NLP+LSTM model produced the most accurate
forecast. This discovery demonstrates that natural language processing characteristics provide further data and
direction for illness prognosis.
To summarize, this article proposes a hybrid Al model for COVID-19 prediction based on the ISI model. The model
incorporates an NLP module, which brings crucial information about the major public support and government
efforts into the prediction calculation process. As a result, the predicted outcomes are more in line with the actual
trend of the epidemic's development.
Section D: The Base Reproduction Number RO An epidemiologic measure that is often used to characterize the
transmissibility of an infected patient is the basic reproduction number R0O. Here, RO(t) is defined as the mean
number of secondary cases that one confirmed case at time t would generate in an all susceptible population. The
following formulation is based on (9):

#
[ +) =10 +j— D+ Bale+) Y AI(+j—i). (10)

=3

The secondary cases infected by the new daily confirmed cases at time t consist of B4(t+3)I(t), B4(t+4)I(v),...,
B4(t+8)I(t), as shown in the equation above. So, the fundamental reproduction number at time t is

5

11 5
il el + DAL _ Zﬁ“r"" bl
=1

AI(E)

Ryl =

Figure 10 shows the results of our analysis of the fundamental reproduction number R0's evolutionary patterns in
Beijing, Shanghai, Zhejiang, Hunan, and Wuhan. The values of
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Fig. 9. Comparison of actual confirmed number and predicted number in three typical cities and at the
countrywide scale. (a) Wuhan. (b) Beijing. (¢) Shanghai. (d) Countrywide
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Fig. 10. Curves of the basic reproduction number R0 for different provinces and cities in China.

When control and preventative measures are put into place, RO for all areas decreases over time. At a pivotal
juncture in the 2020 COVID-19 pandemic, the Wuhan region was quarantined on January 23. We look at additional
RO numbers for Wuhan to see how the city lockdown affected R0O. Locking down the city was crucial in containing
the COVID-19 outbreak, as seen in Fig. 10, where the RO curve in Wuhan peaked on January 24, 2020, and then
decreased quickly. We also forecast the total number of confirmed cases in Wuhan and China using the suggested
hybrid Al model; the data used for this purpose was gathered between January 23, 2020, and February 18, 2020.
Based on the cumulative confirmed cases prediction curves provided in Figure 11, the total number of cases for
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Wuhan up to the end of March would be 482,247. Nevertheless, the figure would rise to 102769 if Wuhan were to
be quarantined on January 27, 2020, four days after the actual time.

VI. CONCLUSION

New daily confirmed cases at various time intervals make varying contributions to susceptible infections, according
to this paper that seeks to anticipate the trajectory of the COVID-19. An analysis is conducted to determine the
effect of confirmed cases in the days leading up to time t on the newly confirmed cases at time t. We use this
information to suggest a grouped multiparameter approach that categorizes confirmed cases' infection rates
according to time. We continue by deriving the multi-parameter ISI model that was suggested. Using natural
language processing (NLP) technology, this article extracts relevant news items, such as steps to control epidemics
and residents' knowledge of the need to avoid epidemics, and encodes them into semantic characteristics. In order to
update the infection rate provided by the ISI model, these characteristics are then supplied into the LSTM network.
To sum up, this article proposes a hybrid AI model for COVID-19 prediction based on the ISI model. The model
incorporates an NLP module, which has brought important information facilitated by the joint efforts of federal and
state governments, as well as the public's massive support in the prediction calculation process. Consistent with real
epidemic cases, the model's prediction results demonstrate that the suggested hybrid model outperforms earlier
models in analyzing the virus's transmission law and development trend, and that related news language information
processing can

(a) (b)
Fig. 11. Prediction curves of the cumulative confirmed cases in (a) Wuhan and at the (b) countrywide scale.
contribute to making the prediction model more accurate. Furthermore, we provide a reliable approach to forecasting

future public health events' transmission laws and development trends. In order to set up a state-of-the-art system for
preventing epidemics, this paper demonstrates that data release efficiency, openness, and transparency are crucial.
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